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Aim of the Project »

% App link: Streamlit App
» This project aims to cluster football teams and players based on playing styles and performance metrics.

o For teams: The goal is to group clubs with similar tactical styles, helping analyse their strengths, weaknesses, and unique
identities.

o For players: The aim is to identify players with similar profiles, spot standout performers, and understand their strengths
and weaknesses in context.

Data Collection & Cleaning »

Data Source &

Data was scraped from EBRef using pandas.read_html() .

Example:

1 # Example Query to scrape Champions league data table

2 standard_stats = pd.read_html(

3 "https://fbref.com/en/comps/8/stats/Champions-League-Stats',
attrs={'id': 'stats_squads_standard_for'}

4
5 )le]

* The same process was applied to player stats.

Data Cleaning &

» Scraped data often contains messy formatting, such as:
o MultiIndex column headers
o "Unnamed" columns

o Irregular naming conventions

A generic cleaning script was used across all tables to ensure consistency.


https://appclustering-myrbfbrv3khmwbpxt9ktez.streamlit.app/
https://fbref.com/en/

Flattening MultiIndex Columns &

1 standard_stats.columns = [
'_'.join(
[1vl if not str(lvl).startswith('Unnamed') else '' for 1lvl in col]
).strip('_")
for col in standard_stats.columns.values
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This joins multi-level column headers with underscores and removes "Unnamed" levels.

Normalizing Column Names &

def clean_column(col):
col = col.strip().lower()
col = re.sub(r'\s+', '_", col)
col = re.sub(x'_+', '_', col)

col = col.strip('_")

return col
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standard_stats.columns = [clean_column(col) for col in standard_stats.columns]

This standardizes all column names by:

* Lowercasing
* Replacing spaces with underscores

* Removing duplicate/trailing underscores

Cleaning the squad Column &
1 standard_stats['squad'] = standard_stats['squad'].apply(
2 lambda x: x.split(' ', 1)[1] if isinstance(x, str) and ' ' in x else Xx

3 )

This removes country prefixes (e.g. "ENG Manchester City" — "Manchester City").

Feature Engineering »

o Most scraped stats are raw totals. To normalize for playing time, I calculated per 90-minute metrics, making comparisons fair
across teams or players with different minutes played.

Per 90 Stat = (

Raw Stat
—————— | x 90
Minutes Played

1 squad_goalkeeping['performance_sota90'] =
squad_goalkeeping['performance_sota']/squad_goalkeeping['playing_time_min']%90

3 squad_defensive_actions['blocks_blocks90'] =
squad_defensive_actions['blocks_blocks']/squad_defensive_actions['playing_time_min']

4 squad_defensive_actions['tkl+int90'] =
squad_defensive_actions['tkl+int']/squad_defensive_actions['playing_time_min']

5 squad_defensive_actions['clr90'] = squad_defensive_actions['clr']/squad_defensive_actions['playing_time_min']

7 defensive_features_df = (squad_goalkeeping[['squad', 'performance_ga90', 'performance_sota%90']]



.merge(squad_defensive_actions[['squad', 'blocks_blocks9@', 'tkl+int90"','clr90']],on="'squad' ,how='left'))

« Additonally, I grouped relevent attributes together based on the feature set I was creating, so example above is defensive

features

o Similar features created for players

Defensive Features &
Index(['squad', 'performance_ga9@', 'performance_sota9@', 'blocks_blocks9@','tkl+int90', 'clr9@']

» Goals conceeded, Shots conceeded, Blocks, Tackles, Clearances

Attacking Features &
['squad', 'per_90_minutes_gls', 'per_90_minutes_xg', 'standard_sh/90','standard_sot/90']

* Goals, xG, Shots, Shots on target

Possession & Passing Features &
Index(['squad', 'poss', 'touches_att_3rd9@', 'total_cmp9@8', 'total_cmp%','prgp90']

Possession, Touches in attacking 3rd, Pass completion, Pass completion %, progressive passes

Applying K-means Clustering »

Now we have our data ready, we will apply K-means clustering.

# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Apply k-means with specified k
kmeans = KMeans(n_clusters=k, random_state=42)
clusters = kmeans.fit_predict(X_scaled)
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First we standardise each feature (mean = 0, std=1) ensures all features contribute equally.

Then we apply K-Means clustering to the scaled data.

Then assisn each row (team/player) to one of k clusters.

Finding the Optimal K (Elbow Method) &

« We can identify the optimal K-Value (Number of Clusters) by using the Elbow Method

» First we need to calculate inertia, this is the sum of squared distances between each data point and its assigned cluster centre

n
Inertia = Z i — pee, ||

i=1

Where:

e Xiis a data point
o uciis the centroid of its assigned cluster

« Lower inertia means points are closer to their cluster centers.



Find the optimal number of clusters
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o Iplotted inertia vs k and look for the "elbow point", this is the optimal K value as any higher K has diminishing returns.

» However I will set up the App so the user can freely choose any cluster amount.

Visualizing Clusters (PCA) &

« Since the data has many dimensions, I used PCA (Principal Component Analysis) to reduce it to 2 or 3 dimensions for

visualization.
1 # PCA for dimensionality reduction to 2D
2 pca = PCA(n_components=2)
3 X_pca = pca.fit_transform(X_scaled)

o This preserves structure while simplifying the view.

e The app includes both 2D and 3D PCA plots to explore clusters interactively.



Team Clusters Based on Possession & Passing Metrics
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« From this PCA plot, we can see the clusters very clearly (K=4), and we can even define playstyles based on the cluster
averages.

o Additionally in the app, I also implemented a 3D interactive Visualisation for the user to explore. This somewhat resolves the
issue of having overlapping clusters in the 2D space.

o Idid a similar process for players, any players in the same cluster as eachother have similar profiles for that specific feature.

Example Findings »

o All of this analysis has been deployed on a streamlit App, the user can play around with it.

« Aninteresting finding is Bukayo Saka, when K=18, features for creativity, we get this output (hide other clusters for clarity)



Player Clusters

« The Streamlit app lets users explore clusters dynamically.

¢ An interesting insight:
When clustering players by creativity features with K=18, Bukayo Saka appeared at the edge of his cluster, showing he's
already very unique.

o At K=19, Saka was placed in a cluster of his own, suggesting his creative profile is unmatched in the dataset.

Even at K=18, he shares a cluster with elite players like Salah and Son, indicating elite creativity, but Saka's data shows he’s
on another level.



